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To: Bierhorst, Peter L. (Assoc)
Cc: Glancy, Scott (Fed); Liu, Yi-Kai (Fed); Jordan, Stephen P (Fed)
Subject: Update to protocol integration.

Here's an update to my protocol integration notes.  As Peter noted, I
had forgotten to include the "PASS/FAIL" events, and I added (at the
bottom) a pass at an argument to go from Peter's source protocol
promise to the one that I used to pass to the extractor.
See what you think.

Manny

%%%

The following is a specification for our algorithm combining a
min-entropy source and a strong randomness extractor to produce a
close-to-uniform string of bits according to the algorithm input,
which can be considered as a request for a random string of bits.  The
point is to implement this algorithm top down, relying on existing
extractor (Trevisan) and source analysis (Peter) protocols for the
details.  Notes discussing various aspects of the specification follow
the specification.

Top level specification:

Input:
  1. $1-\delta$, the level of the request--this is the security parameter.
  2. $\sigma$, the number of bits requested.
  3. $\epsilon'$, the requested nominal probability of success (the
     completeness parameter).

Output, provided the input request can be satisfied:
  1. The output consists of strings $M$, $S$ where $M$ has $\sigma$
     bits and $S$ is the string of all random bits used from
     non-quantum sources.
  2. For any system described by state $E$ satisfying the
     protocol assumptions, there exists a random variable $U$ with
     values strings of $\sigma$ bits, where $U$ is uniformly distributed
     conditional on $SE$ and there is an event $G$ of (unconditional)
     probability at least $1-\delta$  such that $\Prob(U=M \vee \not \PASS|
G)=1$.
  3. While the success probability ($\Prob(\PASS)$) cannot
     be guaranteed to be at least $\epsilon'$, the presumption is that
     this was the design goal in the absence of major disruptions.
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Informal protocol assumptions, alternative A (weaker physical, stronger
$E$ assumption, $S$ is still private, "randomness expansion"):
  1. Provided the internal physical (a) and random source constraints
     (b) are satisfied, $E$ contains no information that could not
     already have been known before the algorithm was invoked.
Informal protocol assumptions, alternative B (stronger physical,
weaker $E$ assumptions, $S$ may be public, "randomness refreshment"):
  1. Provided the internal physical (c) constraints are satisfied
     And $E$ effectively contains no information that could not
     already have been known before the algorithm was invoked,
     except for $S$, but where $S$ satisfies random source
     constraints with respect to other initial information effectively
     known to $E$.

The top level specification is implemented by composing a quantum
min-entropy source with an extractor. The min-entropy source
may output $\PASS=0$, in which case the extractor does not
need to be run and the failure propagates to the top level.

Extractor specification:

Input:
  1. $1-\delta$, the level of the request.
  2. $C$, a bit string.
  3. $\delta_s$, the smoothing parameter.
  4. $\sigma_s$, the quantified min-entropy of $C$ (see promise).
  5. $\sigma$, the number of output bits requested.
  6. Input promise: For any system described by state $E_s$ satisfying
     source protocol assumptions, there exists a random variable $V$
     and an event $G_s$ of probability at least $1-\delta_s$ such that $V$
     has maximum probability $2^{-\sigma_s}$ conditional on $E_s$ and
     $\Prob(C=V |G_s)=1$. (For this algorithm, the source protocol
     assumptions are an implicit argument that propagates to the
     output.)

Output, provided the input request can be satisfied:
  1. The output consists of $M$, $S_x$, where $M$ has length
     $\sigma$ and $S_x$ is the random seed used.
  2. Provided $E_s$ satisfies extractor assumptions, there
     exists a random variable $U$ with values strings of $\sigma_x$ bits,
     where $U$ is uniformly distributed conditional on $S_x E_s$ and there
     is an event $G_x$ of (unconditional) probability at least $1-\delta$
     Such that $\Prob(U=M|G_x)=1$.

Informal extractor assumptions, alternative A (seed is still private).
  1. $S_x$ is uniformly random given $E_s$.
Informal extractor assumptions, alternative B (seed is public).
  1. $E_s$ knows nothing "extra" beyond the value of $S_x$.
     I.e. $E_s = E_s(S_x,E'_s)$, where $S_x$ is uniformly random given $E'_s$.

Source specification:

Input:
  1. $\delta_s$, the smoothing parameter, that is, the level of the request.



  2. $\sigma_s$, the min-entropy requested.
  3. $\epsilon'$, the requested nominal probability of success (the
     completeness parameter).

Output:
  1. The output consists of $C$ and $S_s$, the sequence of random bits
     used in choosing settings, and $\PASS$.
  2. For any system with (unknown) current state $E_s$ satisfying
     source assumptions, there exists an event $G_s$ of probability
     at least $1-\delta_s$ and a random variable $V$ such that
     the probability of $V$ conditional on $S_s E_s$ is at most
$2^{-\sigma_s}$
     and $\Prob(V=C \vee \not \PASS|G_s)=1$.
  3. See top-level output promise with regard to $\epsilon'$.

Informal protocol assumptions, alternative A (weaker physical, stronger
$E_s$ assumption, $S_s$ is still private):
  1. Provided the internal physical (a) and random source constraints
     (b) are satisfied, $E_s$ contains no information that could not
     already have been known before the algorithm was invoked.
Informal protocol assumptions, alternative B (stronger physical,
weaker $E_s$ assumptions, $S_s$ may be public)
  1. Provided the internal physical (c) constraints are satisfied
     And $E_s$ effectively contains no information that could not
     already have been known before the algorithm was invoked,
     except for $S_s$, but where $S_s$ satisfies random source
     constraints with respect to other initial information effectively
     known to $E_s$.

Parameter constraints.

Extractor parameters, according to Alan's slides and follow-ups:

Relevant input parameters: $\delta$, $\delta_s$, $\sigma_s$, $\sigma$, $C$.
Relevant algorithm parameters: $s$, the number of seed bits used.
And $\epsilon$, the total variation distance to uniform of the output
according to Alan's specification with a bit of slack to simplify.

Here are the extractor constraints:
  1. $\epsilon+\delta_s \leq \delta$.
  2. $\sigma\leq \sigma_s-4(\lceil\log_2(1/\epsilon)\rceil+6)$
  3. $s=8(\lceil\log_2(4|C|/\epsilon^2)\rceil)^2$.

Source parameters, from Peter's notes.

Relevant source algorithm parameters, according to Peter's notes:
$n$, the number of trials, $V$, the "pass" statistic and
$m$, Bell function parameter (PR boxyness scale).
The number of settings choice bits used is $2n$.

Here is the source constraint:
  1. $\delta_s \geq (1+2m(1-2^{-\sigma_s/n}))^n/V$
     See also [[Approximate%20min-entropy%20formula][Approximate min-entropy
formula]].

Preprocessing:



We expect to be constrained by having $n$ essentially fixed to get a
reasonably high nominal probability of success.  In preprocessing, we
attempt to maximize $\sigma$ subject to there being a solution to the
constraints. Note that this may require additional information. With
fixed $n$, the expected value of $V$ can be anticipated and a
conservative lower bound for the nominal probability of success can be
used.

Notes:

+ The implementations of the specifications should be split
  into a pre-processing step that checks whether the input
  request can be satisfied and suggests alternative parameters
  if it cannot. This is one way of thinking about the process
  of determining goals in the context of source constraints.

+ I use the phrase "uniformly random given E" rather than
  uniform and independent of $E$ because I am keeping in mind
  weakening this assumption, in which case independence will be lost
  but conditional distribution constraints still apply. It also
  means that the version of smoothed min-entropy used is defined
  parallel to the conditions on seeds.

+ Using probabilities of identity with "standard" RVs makes arguments
  on composing protocols simpler. I think the relationships between
  various "standard" distance measures and probability of identity
  with standard RVs is in one of the theses related to the
  field. Possibly Colbeck's. I am guessing that this type of
  promise plays a rule when studying composability of protocols.
  I can fill in relevant proofs later if needed. A relevant argument
  is below.

+ I moved $\epsilon'$ of Peter's notes to the top level, so in Peter's notes,
  $\delta_s$ from here is to be identified with $\delta\epsilon'$ from there.
I did
  this because this parameter is rather "fuzzy", in the sense that
  there is no guarantee on what it is. At the same time, it doesn't
  play a fundamental role in the promises made by the different
  components: The promises are naturally unconditional.  As a result,
  $\epsilon'$ is always just a multiplicative adjustment (deferrable to the
  top level) to allow for conditioning on success. All we can do is
  design for a nominal probability of success, usually close to 1 (as
  has always been the plan).  Making a conservative choice of $\epsilon'$ to
  allow for a conditional-on-success promise is then up to the
  top-level user/caller/operator, if they want to. In a full protocol
  with period invocations of the algorithm, frequent success is
  essential for usability, and is sufficient support for not having to
  worry about probability of success (much). In practice, if we find
  even a few failures, there is likely an equipment problem requiring
  attention.

  I have been favoring the alternative of filling in with seed
  randomness in the presumably rare cases of failure. This disallows
  the alternative promise where the seeds are "public".  I would note
  that for an application such as the beacon, we cannot fail to
  produce new randomness every minute (or less), so there always has



  to be a backup plan, lest the beacon go out of service.
  It is clear that this is a serious concern for Rene P.

+ <<Approximate min-entropy formula>> I expect that in our applications,
$2^{-\sigma_s/n}$ is very close to
  $1$; $\sigma_s/n$ is the expected entropy rate, in bits per trial.  The
  constraint for the source can then be approximated:
  $(1-2^{-\sigma_s/n}) = (1-e^{-\ln(2)\sigma_s/n}) \leq \ln(2)\sigma_s/n$. So
  the constraint is strengthened with $\delta_s \geq
  (1+2\ln(2)\sigma_{s}m/n)^n/V $. Using $(1+\alpha/n)^n \leq e^{\alpha}$, one
can go for

  \[ \delta_s \geq 2^{2\sigma_{s}m}/V .\]

  These approximations should be very good in our regime. The
  approximate expression gives some insight into the relationships
  between parameters. Observe that $V$ is a product of individual
  trial statistics that is expected to grow exponentially. The
  expected growth is correlated with $m$, i.e. larger $m$ means faster
  growth. A source for which there is a statistic with larger $m$
  should do better overall, after this relationship is accounted for.

+ In the top-level specification, we cannot promise
  $\Prob(U=M|SE)\geq1-\delta$ uniformly in $SE$. But we could promise
  $\Prob(\Prob(U=M|SE)\geq1-\delta')\geq1-\delta''$, where the outer
probability is
  with respect to $SE$. Besides the complication of having an extra
  parameter, the relationship to the given promise is not direct: From
  the promise we can use a Markov bound to determine what can be
  promised in this conditional form.  That is, from the promise we can
  conclude that $\sum_{se}\Prob(SE)\Prob(U\ne M|SE)\leq\delta$. So
$\Prob(\Prob(U\ne
  M|SE)\geq\delta')\leq\delta/\delta'$.

+ It is necessary to have formal counterparts to the informal promises
  given. In stochastic process terms, they come down to the assertion
  that the state $E$ of the system with respect to which we want the
  random bits produced to be uniform can be "sliced" into a stochastic
  process $(E_k)$, where $E$ is a function of $(E_k)$ and $(E_k)$
  satisfies per-trial and pre-extractor conditions such as conditional
  uniformity of the random bits to be used as settings or seeds and
  no-signaling, as well as conditional independence statements that
  ensure that nothing is subsequently learned about the measurement
  outcomes. (That $E$ can be made explicit in this way should follow
  from our proofs and is helpful when discussing the different
  incomparable security scenarios.)  The slicing need not be the same
  as the physical time-slicing of the system.  In particular, the
  random settings/seeds could have been learned earlier, provided that
  this didn't help, that is, it was known, but irrelevant as encoded
  in the virtual slicing $(E_k)$. However, reality matters when
  justifying the assumptions on physical grounds. That is, if the
  settings/seeds were indeed public, we need to make extra physical
  assumptions about our devices, most notably the source. The
  "randomness refreshment" scenario is sensible if we built the source
  ourselves. If we bought it from QuantiQ and in the purchase agreed
  to licensing rules (proprietary innards!), this is harder to
  justify. We may have to trust independent physical barriers we put



  in place.

  If the "public input randomness" scenario is to be made explicit, we
  should have a name for it that parallels "randomness expansion" and
  "randomness amplification". One thought is that randomness that is
  (no longer) private and already known to all is stale, so the
  protocol refreshes stale randomness, so "randomness refreshment"?
  Only problem is it makes me think of a party with refreshments...

+ We need to pay attention to the issue of composability of
  source and extractor. I am not sufficiently familiar with the
  results on composability, I just know that it is a non-trivial
  issue. With the formulation of the promises given and all
  relevant systems being classical, this seems to be ok for now.
  Nevertheless, we should go over this explicitly.

+ As things stand, we have only made arguments for classical
  systems. This seems reasonable for now, particularly if we have
  built the source ourselves and/or are sure that the source is
  physically isolated except for the quantum channel required for the
  protocol. However, there are good reasons to consider quantum
  security seriously here. For example, we have one explicitly quantum
  device in the picture, and if we bought it from QuantiQ and have
  agreed not to or have no inclination to look inside, there is always
  the possibility that it takes full advantage of quantum mechanics to
  maximize its influence on the future.  In particular, it can defer
  measurements of its own state, choosing them to optimize its
  correlation with measurement outcomes after having learned settings
  etc, for instance. Our current arguments do not apply to this
  possibility.  I note that this issue has tripped up many
  researchers.  Most notably Yao and his original quantum bit
  commitment scheme.

*** TV versus probability of identity.

Here's a lemma that helps with relating total variation
distance to probability of identity with an RV having the
target distribution:

Let $\mu$ be the probability distributions of RVs $M$ and let $\mu'$ be
another probability distribution on the range $R$ of $M$.  Suppose
that the total variation distance between $\mu$ and $\mu'$ is $\delta$. I'll
take this to mean that $\int d\mu^+ =\delta$, where $\mu^+$ is the positive
part
of the signed measure $\mu-\mu'$.  Claim: There exists a random variable
$U$ with the same range as $M$ such that the probability distribution
of $U$ is $\mu'$ and $\Prob(M\ne U)=\delta$. Let $\mu^-$ be the positive part
of
$\mu'-\mu$.  Let $E^+$ and $E^-$ be disjoint events such that
$\mu^+(R\setminus
E^+)=\mu^-(R\setminus E^-)=0$. On $E^+$, $\mu'\le\mu$ and $\mu'$ is absolutely
continuous with respect to $\mu$, so the $d\mu'/d\mu\in[0,1]$ is defined.
Similarly, on $E^-$, $\mu\leq\mu'$.  Define $B$ to be a RV with distribution
independent of all relevant events so far. That is, form the
independent product of the initial event space with another one on
which $B$ is defined, with probability distribution now being
determined. Let $B$ have range $E^-$ and probability distribution



$(\mu'-\mu)/\delta$. Define a Markov process on $M$ by the following
procedure:
If $m=M$, then: if $m\in E^+$, output $U=m$ with probability $d\mu'/d\mu$ and
$U=B$ with probability $1-d\mu'/d\mu$, otherwise output $U=m$.  Then $U$
is distributed as $\mu'$ and $\Prob(U\ne M) = \delta$.  The Markov process
must use new random resources, not part of the event space previously
in place. To formalize this better, we introduce a new independent
space/RV $I$ with range $[0,1]$ and uniform probability
distribution. The Markov process can then be defined explicitly.
Note that the constructed RV is conditionally independent of
"everything else", given $M$.

Conversely, If there exists an RV $U$ with distribution $\mu'$
such that $\Prob(M\ne U)=\delta$, then the total variation distance
of the probability distribution of $M$ from $\mu'$ is at most $\delta$.

*** Smoothed min-entropy and how it relates to identity with min-entropy RV.

Here, I am assuming discrete, finite-range RVs. Otherwise this needs a
bit of work with conditional expectations and measurable sets up to
sets of measure zero and a better definition of $V$ to avoid adding an
infinity of independent RVs.  The construction bypasses the need
to explicitly refer to "smoothed min-entropy".

Peter's source protocol guarantees that $\Prob(\Prob(C|S_s E_s)\leq
2^{-\sigma_s} \vee \not\PASS)\geq 1-\delta_s$.  $\Prob$ in the event
is evaluated with respect to the global, unconditional measure on the
total event space.  From this we need to establish existence of the
random variable $V$ in the source protocol output specifications. Note
that $V$ can depend on the system with state $E_s$. We can assume that
the range of $C$ has size $N$ at least $2^{\sigma_s}$.  Fix $S_s=a,
$E_s = b$. Let $(p_k)$ be the monotonically non-decreasing
probabilities of $C$ given $S_s=a$ and $E_s=b$.  Let $k_0$ be the
maximum $k$ such that $p_k\leq 2^{-\sigma_s}$.  Let $k(x)$ be the
position of the probability of $x$ in the list $(p_k)$. Let
$p_{>}=\sum_{k>k_0}p_k$.  For $k\leq k_0$, define
$q_k=\beta(2^{-\sigma_s}-p_k)$ and for $k>k_0$, $q_k=\gamma
2^{-\sigma_s}$. Choose positive $\beta$ and $\gamma$ to satisfy
$\sum_k q_k = 1$, $\beta*p_{>}\leq 1$, and $\gamma*p_{>}\leq 1$.  For
example, start with $\beta=\gamma=1/p_{>}$ to satisfy the latter two
constraints with $\sum_k q_k \ge 1$ (check that this is so
explicitly), then normalize.  Let $A_{a,b}$ be a random variable with
probability distribution $q_k$ independent of everything else. This
requires extending the global event space with a "hidden" independent
variable, one for each possible $a$ and $b$.  Define $V=C$ on the
event $[\Prob(C|S_s E_s)\leq 2^{-\sigma_s}]$. On the complement of
this event, define $V=A_{S_s,E_s}$. Then, conditionally on $S_s$ and
$E_s$, $V$ has min-entropy $\sigma_s$. It satisfies the condition on
$V$ required for the output of the source protocol, with $G_s =
[\Prob(C|S_s E_s)\leq 2^{-\sigma_s} \vee \not\PASS]$.

Check of constraints for $q_k$: Let $\beta=\gamma=1/p_{>}$. Let
$N$ be the size of the range of $C$ and $n=2^{\sigma_s}$. Then
\begin{eqnarray}
\sum_k q_k &=& \sum_{k\leq k_0} \beta (1/n-p_k) + \sum_{k>k_0} \gamma/n \\
  &=& (1/p_>)((k_0/n-(1-p_>)) + (N-k_0)/n) \\
  &=& (1/p_>)(N/n-(1-p_>)) \\



  &\ge& (1/p_>)(n/n-(1-p_>)) = 1.
\end{eqnarray}
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